

Energy Projects: Which Do I Do First?

Sunshine Coast Community Solar Association

Presented by: Gerry Pageau, P.Eng.

COURSE OUTLINE

Week 1: Harnessing Solar Energy on the Coast Week 2: Improving the efficiency of HVAC systems Week 3: Upgrading the building envelope Week 4: Domestic hot water, lighting & appliances

Harnessing Solar Energy

- 1. Introduction: The SCCSA, sponsor of this class. What are the learning objectives this week?
- 2. Backgound: Why do we all need to care about energy efficiency? Terminology and nomenclature.
- **3**. Renewable Energy Production: Why solar? What factors impact efficiency? How to calculate payback.
- 4. Retrofit Incentives.
- 5. Resources and Take-Home Tools.
- 6. Wrap-Up and Questions

INTRODUCTION

Who are we and what is this presentation about?

- What is the Sunshine Coast Community Solar Association?
- A registered BC non-profit
- Engineering interns, retired engineers, electricians, accountants
- ~70 active members!

What Do We Do?

- Promote low-carbon lifestyles
- Educate the public
- Encourage the implementation of energysaving measures
 - Free energy audits for public buildings!

Table of contents of	
one of our reports.	

Contents

Facility Description
Occupancy considerations
Energy Use
Energy Consumption Overview
Energy Costs
Energy Audit Findings
Historical Energy Consumption
Energy Conservation Measures (ECMs)
ECM#1: Lighting Retrofit
ECM#2: Solar Installation
Suggested Facility Improvement: Heat Pump Riser
Building Information
Building Envelope
HVAC Controls
Lighting
Solar Viability
Building Requirements
Shade Mapping and Energy Production
Feasibility
EV Charging Infrastructure

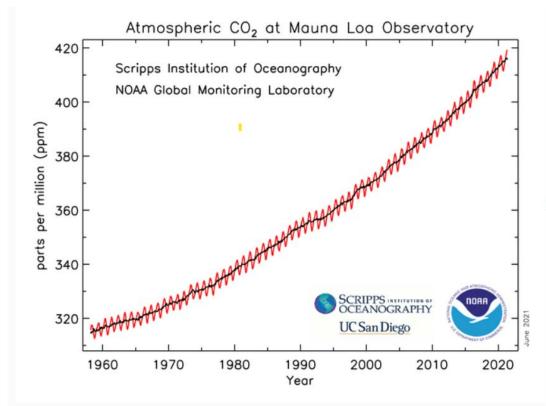
What Will You Learn Today?

- Why renewable energies are important
- Energy terminology
- Ideal roof type for solar panels
- How much energy solar panels produce
- Financial incentives to install solar panels

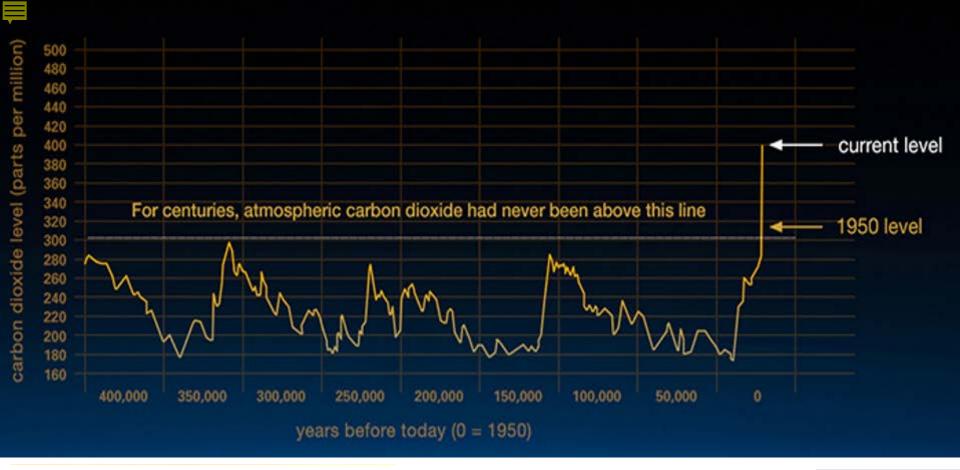
BACKGROUND INFORMATION Renewables, solar panels, and some jargon

Why Are Renewable Energies Important?

- Air, land and water pollution
- Climate change (global warming)
- Rising energy costs
- Centralized control of resources/infrastructure
- Limited fuel supplies (coal, oil, gas)


CARBON DIOXIDE'S RELENTLESS RISE

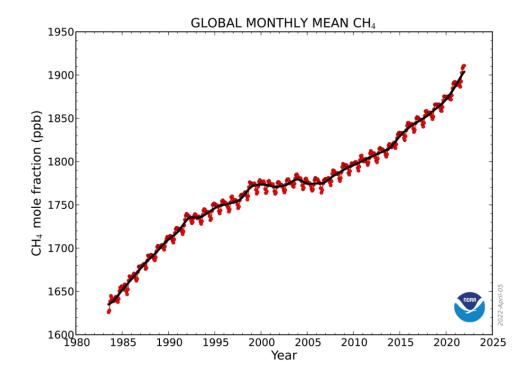
Atmospheric CO₂ concentrations are now 35 per cent higher than pre-industrial levels, as indicated by readings taken at Mauna Loa in Hawaii



Fossil Fuel Pollutants:

- **SO2, NOx,**
- volatile organic components (VOCs)
- **C**0, CO2
- Methane
- Particulate Matter (PMs)
- Ground Level Ozone
- Heavy metals (mercury and lead)

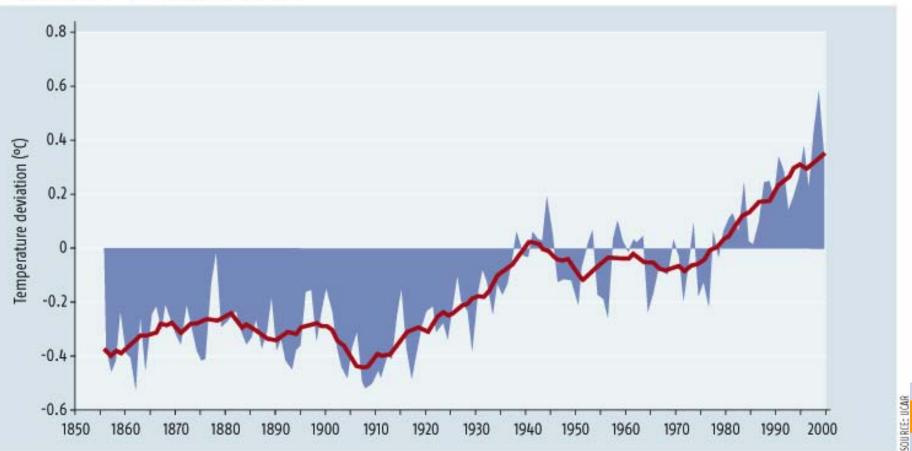
GRAPH DEPICTS THE UPWARD TRAJECTORY OF CARBON DIOXIDE IN THE ATMOSPHERE AS MEASURE THE MAUNA LOA ATMOSPHERIC BASELINE OBSERVATORY BY NOAA AND THE SCRIPPS INSTITUTION OF OCEANOGRAPHY. THE ANNUAL FLUCTUATION IS KNOWN AS THE KEELING CURVE. CREDIT: NOAA GLC MONITORING LABORATORY



Fossil Fuel Pollutants:

Atmospheric methane is also increasing rapidly due to:

- Increasing animal agriculture
- Fossil fuel extraction, transport and use
- Melting permafrost & organic decay in wetlands


Methane has 25x the heat trapping impact of CO_2 but does not have the extreme longevity of CO_2 so CH_4 reductions will have immediate mitigating effect.

CH4 trend: This graph shows globally-averaged, monthly mean atmospheric methane abundance determined from marine surface sites since 1983. Values for the last year are preliminary. (NOAA Global Monitoring Laboratory)

THE WORLD IS GETTING WARMER

Temperature plotted as the deviation from the 1960 to 1990 average

12

TERMINOLOGY & NOMENCLATURE

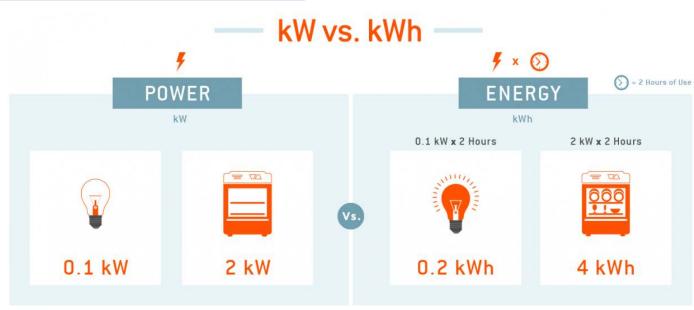
VOLTAGE OR VOLT (V)

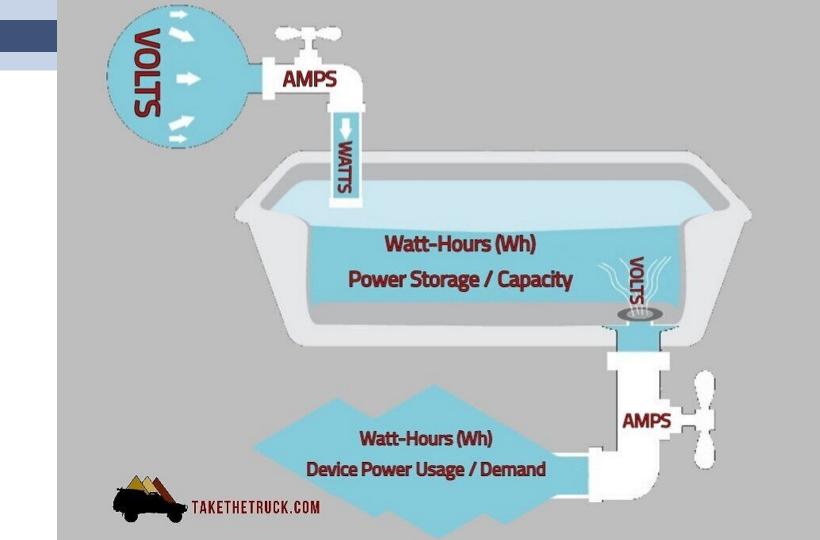
- Unit of electric potential
- You can imagine voltage as the water pressure in a dam. The greater the elevation of the dam the higher the potential

AMPS (A)

- Unit of electric current
- Measures electron flow past a point in one second
- Imagine current as the water flowing from a dam

WATTS (W)


- Measure of power (energy per unit time)
- Imagine power as the amount of water flowing combined with the water pressure



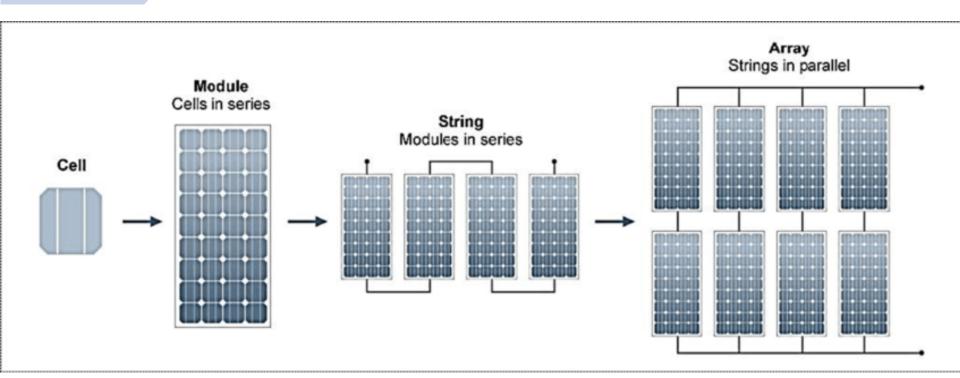
TERMINOLOGY & NOMENCLATURE

- KILOWATT HOUR (kWh)
- Amount of energy consumed
- 1 kWh = 1 kW of power expended over 1 hour

TERMINOLOGY & NOMENCLATURE

WATTS PER SQUARE METER (W/m²)

 Used to describe the amount of solar energy that reaches the solar panel cells

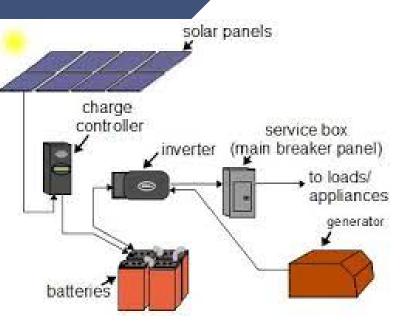

DIRECT CURRENT (DC)

- Direction of current flow does not change with time
- The type of current that solar panels generate

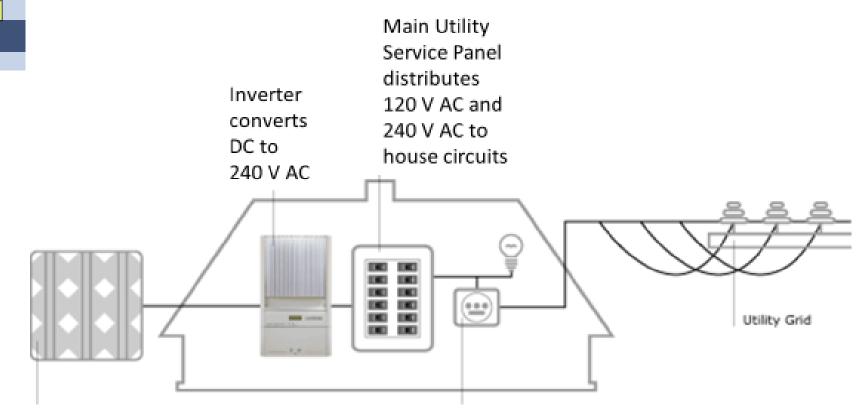
ALTERNATING CURRENT (AC)

 The type of current that is used for most household appliances

Solar Photovoltaic (PV) Terminology



Source: https://www.researchgate.net/figure/Figure-17-Configuration-of-cell-module-and-array34_fig5_342736081



COMPONENTS OF A PV ARRAY

- String inverters (with optimizers) or microinverters (DC to AC)
- Distribution Panel
- Transformers (to change the voltage)
- Smart meter
- For Off-Grid add:
- Battery Back-up
- Generator Back-up
- Charge Controller
- Rectifier (AC to DC)
- Disconnect/transfer switches

Off-Grid Solar Power System

Solar cell puts out 0.5 V DC Solar panel 12 to 40 V DC String up to 600V DC

Conventional meter measures energy consumption **from** grid. Smart meter can also measure energy sent **to** grid

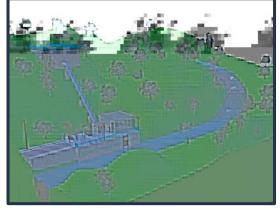
3

ENERGY PRODUCTION

How much energy can different technologies produce?

🔆 RENEWABLE ENERGY TECHNOLOGY

Geothermal


Wind

Requires a large, hot underground water reservoir

 Highly dependent on geography Not enough wind on the Sunshine Coast to have good payback

Run-of-the-River Hydro

Dependent on geography, requires permits.

Water Heating

Solis Power
THUS IL

Direct Domestic Hot Water heater

Solar!

- Evacuated tubes
- Can place on roof or ground

Energy Production

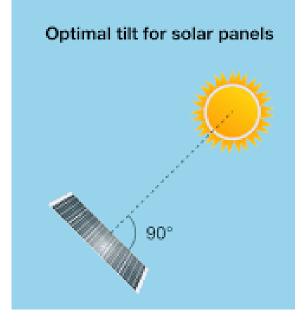
- Solar PV Panels for electricity production
- Solar is best option for thermal or electric energy production in this area

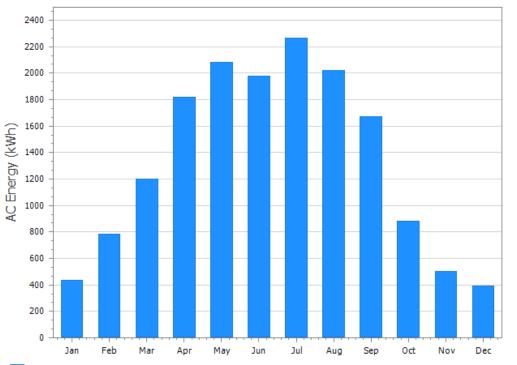
Pool heating solar matsInexpensiveSimple to install

ENERGY PRODUCTION FACTORS

The amount of energy a PV system can produce depends on:

- Amount of roof shading
- Solar panel angle relative to sun rays
- Solar panel direction relative to South
- Solar panel efficiency
- Weather/Season

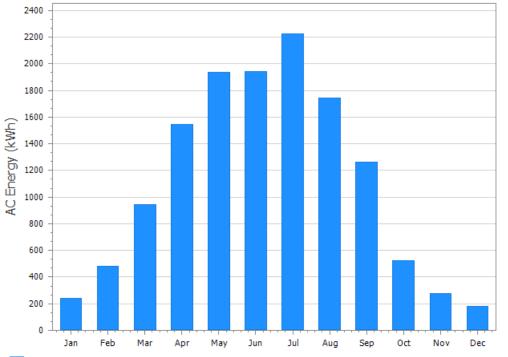



ENERGY PRODUCTION FACTORS

The ideal solar panel will:

- Be South-facing
- Have no obstructions (shading)
- Have high efficiency
- Be perpendicular to the sun's rays
- Have optimizers (if string inverters)

Best case: Full Exposure – South Facing (180°) Roof With 30° Pitch

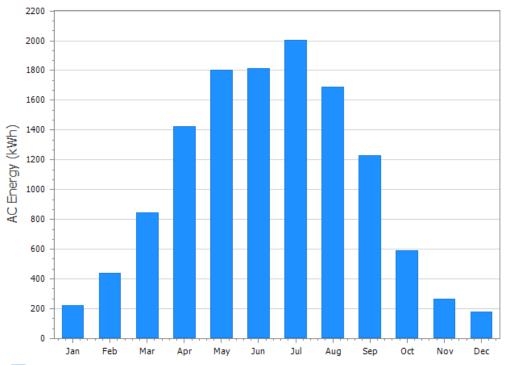


Roof	Solar Modules	Energy	
Size	385Wp	Produced	
(ft ²)	Canadian Solar	(kWh/Year)	
1,000	36 Panels	16,067	

The avg. single-family detached home in BC used **15,348** kWh of electricity in 2019 (with electric heating) <u>-BCHydro</u>

South Facing (16,067 Annual kWh)

Scenario 2: Full Exposure – West Facing (270°) Roof With 30° Pitch

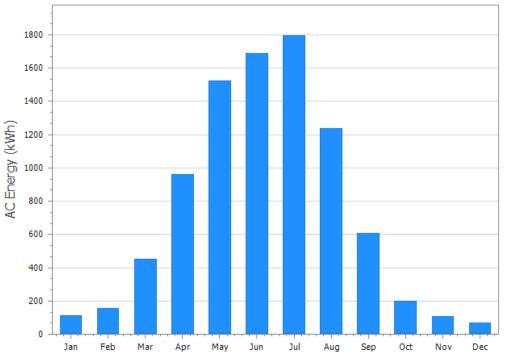


Roof	Solar Modules	Energy	
Size	385Wp	Produced	
(ft ²)	Canadian Solar	(kWh/Year)	
1,000	36 Panels	13,331	

The avg. single-family detached home in BC used **15,348** kWh of electricity in 2019 (with electric heating) <u>-BCHydro</u>

West Facing (13,331 Annual kWh)

Scenario 3: Full Exposure – East Facing (90°) Roof With 30° Pitch

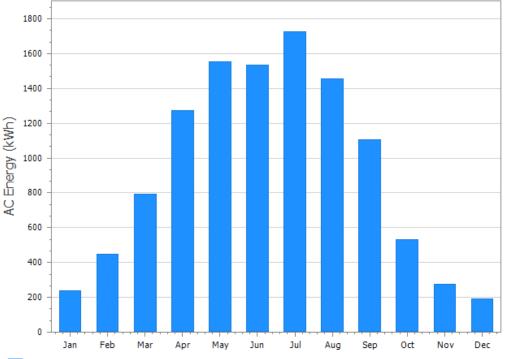


Roof	Solar Modules	Energy
Size	385Wp	Produced
(ft ²)	Canadian Solar	(kWh/Year)
1,000	36 Panels	12,529

The avg. single-family detached home in BC used **15,348** kWh of electricity in 2019 (with electric heating) <u>-BCHydro</u>

East Facing (12,529 Annual kWh)

Scenario 4: Full Exposure – North Facing (0°) Roof With 30° Pitch


Roof	Solar Modules	Energy	
Size	385Wp	Produced	
(ft ²)	Canadian Solar	(kWh/Year)	
1,000	36 Panels	8,930	

The avg. single-family detached home in BC used **15,348** kWh of electricity in 2019 (with electric heating) <u>-BCHydro</u>

North Facing (8,930 Annual kWh)

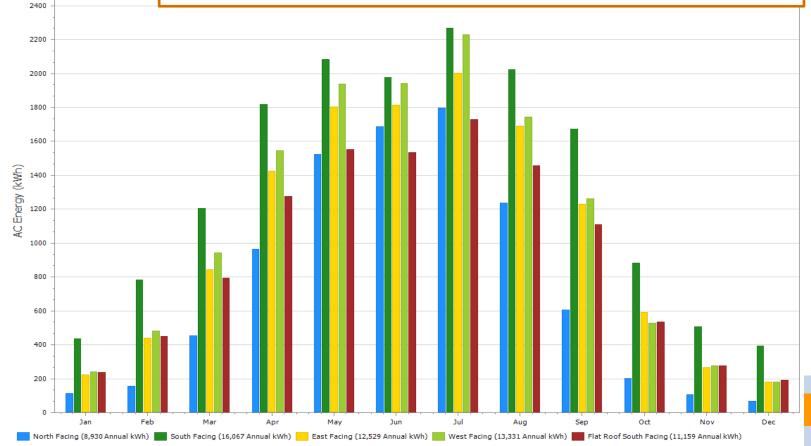
Scenario 5: Full Exposure – Flat Roof

Flat Roof – Panels will have 10° angle and 2' inter-row

Roof	Solar Modules	Energy	
Size	385Wp	Produced	
(ft ²)	Canadian Solar	(kWh/Year)	
1,000	Only room for 27 panels, not 36	11,159	

The avg. single-family detached home in BC used **15,348** kWh of electricity in 2019 (with electric heating) <u>-BCHydro</u>

Flat Roof South Facing (11,159 Annual kWh)


Overall Comparison

Roof Orientation	# of Panels (385Wp Canadian Solar)	Energy Produced (kWh/Year)	Simple Payback (Years)	Probable payback due to inflation & taxes (Years)
South	36	16,067	13.3	8.6
West	36	13,331	16.1	10.0
East	36	12,529	17.1	10.4
North	36	8,930	24.0	13.4
Flat	<mark>27</mark>	11,159	14.4	9.2

Summary of results for a 1,000ft² roof with a 30° pitch for first four scenarios and 10° panel angle and 2 ft row spacing for flat roof scenario.

Annual energy production by month

Summary of results for a 1,000ft² roof with a 30° tilt for first four scenarios and 10° tilt with 2 ft row spacing for flat roof scenario.

- 1. Add up BC Hydro consumption history for past 12 months. (kWh/y).
- Divide kWh/y by 1,200 kWh/y /kWp to get installed array size (kWp) to achieve net zero assuming perfect exposure.
- 3. Divide array kWp by panel nameplate rating kWp to get number of panels.

- Determine if the "net zero" number of panels will fit in location available for installation. A typical panel is 1 m x
 1.6 m and they can be installed in portrait or landscape orientation.
- 2. # of panels will be the lesser of "net zero" or # that fit.

ESTIMATING SIMPLE PAYBACK

- 1. Typical residential arrays currently have installed cost between \$2.10/W and 3:20/W.
- 2. Assuming:
- 13,500 kWh/y consumption
- 1,200 kWh/y /kWp
- 385 watt panel rating (0.385 kWp)
- 3. Then we need 29 panels.

ESTIMATING SIMPLE PAYBACK

- Assuming cost of \$2.40/W, then 29 x 385 W x \$2.40/W = \$26,746 installed cost.
- Assuming current hydro cost of \$0.145/kWh the savings will be 13,500 kWh/y x \$0.145 = \$1,957/y.
- 3. Simple payback = \$26,746/\$1,957 = 13.7 y
- 4. Note real payback much better since saving after tax dollars and now inflation-proof.

4

RETROFIT INCENTIVES

Ways to reduce costs for retrofitting your home

HOME RETROFIT INCENTIVES

- BCHydro Net Metering Program
- Canada Greener Homes Initiative
- <u>Canada Greener Homes Initiative Eligibility and</u> <u>Application</u>
- <u>CleanBC Rebates Program</u>
- BCHydro Home Renovation Rebates

To access any of the links, hold "CTRL" and then click the link

5

TOOLS & RESOURCES

Ways to reduce costs for retrofitting your home

TAKE-HOME TOOLS & RESOURCES

To access any of the links, hold "CTRL" and then click the link

Our Website

- Our Email: <u>suncoastcsa@gmail.com</u>
- Solar Thermal Water Heating Systems Info
- DIY home audit Checklist

SCCSA MEMBERSHIP BENEFITS

Support solar in your community!

- Bi-monthly Newsletters
- Only \$20/year for membership

More members = more grants for the association = more solar panel and emissions reduction projects in your community

SCCSA MEMBERSHIP SIGN UP

Support solar in your community!

 Sign up online at <u>https://suncoastcommsolar.weebly.com/membership.ht</u> <u>ml</u>

THANK YOU!

Do you have any questions?

42

JOIN US OUTSIDE TO SEE SOME SOLAR PANELS IN ACTION!

Halfmoon Bay Festival Set-Up